do some little research (simulations and/or theory) on 504 31.18000 l /URI (www\056cambridge\056org\0579781107172876) >> /I1 28 0 R Lecture 12: Tuesday February 27. Box 513 5600 MB Eindhoven, The Netherlands rhofstad@win.tue.nl January 27, 2011. ET /Annots [ << >> << >> /Subtype /Form /URI (www\056cambridge\056org) /XObject << Models and Methods for Random Networks, Lectures 17 - 18: Thursday March 15 and Tuesday March 20. endobj /Font << /pdfrw_0 Do /A << Search and congestion in complex networks /Kids [ 3 0 R 4 0 R 5 0 R 6 0 R 7 0 R 8 0 R 9 0 R 10 0 R 11 0 R 12 0 R 13 0 R 14 0 R 15 0 R 16 0 R ] /F1 30 0 R /ProcSet [ /Text /PDF /ImageI /ImageC /ImageB ] >> ] Social Networks by Douglas Gale (NYU) and Shachar Kariv (UC Berkeley). Lectures 13 and 14: Thursday March 1 and Tuesday March 6. /A << /Parent 1 0 R Degree sequences and the power law 6 1.4. In the second part of the book the student learns about random networks, small worlds, the structure of the Internet and the Web, peer-to-peer systems, and social networks. Random Graphs and Complex Networks 1 Branching Processes A branching process is a simple model for something like a population evolving in time. >> stream /Type /Annot Q 1 1 1 RG Networks with Augmented Local Awarenes by Jianyang Zeng, Wen-Jing Hsu, Jiangdian Wang. The CHKNS model; from Durrett Chapter 7. /Rect [ 17.01000 21.01000 191.50000 13.01000 ] Suppose we have some amoeba who, at each generation, each individual gives birth to a number of children given by some distribution: p i= P(individual has exactly ichildren ). << /pdfrw_0 90 0 R /Type /Page >> ] endobj <004d006f0072006500200049006e0066006f0072006d006100740069006f006e> Tj /Resources << /Font << Shankar Bhamidi. >> <00520065006d0063006f002000760061006e002000640065007200200048006f006600730074006100640020> Tj /pdfrw_0 46 0 R /Subtype /Link The Self-Organizing economy (Krugman) and Cities and Complexity (Michael Batty). Random graphs with arbitrary degree distributions and their applications. >> f Draft version (Internet Archive) of chapters of the text. 504 753.77000 l >> << >> /ProcSet [ /Text /PDF /ImageI /ImageC /ImageB ] >> ] /I1 Do The book integrates approaches from mathematics, physics and computer sciences to analyse the organisation of complex networks. /Contents 102 0 R >> << 13 0 obj >> ] Random Graphs and Complex Networks Remco van der Hofstad 1 January 28, 2008 1Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. S >> >> << A Dynamic Model of Social Network Formation /Subtype /Form /I1 28 0 R Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications /Parent 1 0 R /pdfrw_0 103 0 R Goh et al); /S /URI /Type /Annot /Type /Annot /A << >> /Type /Catalog /pdfrw_0 121 0 R << /ProcSet [ /Text /PDF /ImageI /ImageC /ImageB ] >> >> >> Lecture based on << /S /URI endobj /XObject << 14 0 obj /Type /Annot /Border [ 0 0 0 ] Yule process heuristics for proportional attachment models, following /Annots [ << >> q Lecture 20: Tuesday April 3. << >> >> /F1 30 0 R /A << Review of undergraduate branching processes, following 0 g /Resources << /Rect [ 17.01000 767.69000 81.07000 759.69000 ] 15 0 obj /Resources << >> Sampling /Type /XObject Random Graphs and Complex Networks Remco van der Hofstad Department of Mathematics and Computer Science Eindhoven University of Technology P.O. /Rect [ 17.01000 767.69000 81.07000 759.69000 ] /MediaBox [ 0 0 504 858.65000 ] /Border [ 0 0 0 ] Q if(window.parent==window){(function(i,s,o,g,r,a,m){i["GoogleAnalyticsObject"]=r;i[r]=i[r]||function(){(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)})(window,document,"script","//www.google-analytics.com/analytics.js","ga");ga("create","UA-41540427-2","auto",{"siteSpeedSampleRate":100});ga("send","pageview");}. /A << /Subtype /Link Lecture 9: Thursday Feb 15. /Type /Page >> >> /Annots [ << /Border [ 0 0 0 ] /URI (www\056cambridge\056org\0579781107172876) >> /A << >> ] 0.06500 0.37100 0.64200 rg 0 31.18000 m /Font << /Border [ 0 0 0 ] /S /URI /I1 28 0 R /URI (www\056cambridge\056org) Albert - Barabasi survey. Two Pathogens Spreading on a Network by Mark Newman. Javed Ahmed. /Rect [ 17.01000 21.01000 191.50000 13.01000 ] >> >> /Contents 55 0 R ET In Complex Networks, three pioneering researchers offer balanced, up-to-date coverage that will be ideal for advanced undergraduates, graduate students, researchers, and industry practitioners alike. 0.99000 w >> ] Joanne Lee. 0 g /FullPage Do /Font << /A << /Rect [ 17.01000 21.01000 191.50000 13.01000 ] >> /A << >> >> /BBox [ 0 0 504 720 ] << Q Universal behavior of load distribution in scale-free networks as a source for reading projects. /Type /Annot 0.06500 0.37100 0.64200 rg >> << /XObject << 404.79000 13.47000 71.02000 -0.39000 re /XObject << /S /URI /ProcSet [ /Text /PDF /ImageI /ImageC /ImageB ] /Annots [ << endobj << Transport capacity in the STIRG model. /pdfrw_0 82 0 R 0.06500 0.37100 0.64200 RG /A << /A << /Annots [ << /S /URI /Type /Page >> << /Type /Page effects of spatial constraints on the evolution of weighted complex networks by some new models I will suggest. /Font << /MediaBox [ 0 0 504 858.65000 ] Lecture 6: Thursday Feb 1. >> /Type /Annot /URI (www\056cambridge\056org) ET /Type /Page >> /Rect [ 17.01000 21.01000 191.50000 13.01000 ] /Subtype /Link >> /A << >> >> q /Border [ 0 0 0 ] Requirements for students. >> 0 753.77000 m /Resources << >> /MediaBox [ 0 0 504 858.65000 ] /Rect [ 17.01000 767.69000 81.07000 759.69000 ] /F1 30 0 R Saberi (Stanford): Information Networks. >> >> /URI (www\056cambridge\056org\0579781107172876) >> ] /Rect [ 17.01000 21.01000 191.50000 13.01000 ] Lectures 4 and 5: Thursday Jan 25 and Tuesday Jan 30. Q /Subtype /Link 0.73700 0.74500 0.75300 rg /Border [ 0 0 0 ] /ProcSet [ /Text /PDF /ImageI /ImageC /ImageB ] /URI (www\056cambridge\056org) >> /A << /Filter /FlateDecode A tractable complex network model based on the stochastic mean-field /Subtype /Link Threshold Effects for Flow through a complex network. >> /A << >> << /XObject << /Rect [ 17.01000 767.69000 81.07000 759.69000 ] Spatial Gossip and Resource Location Protocols by /Parent 1 0 R Barabasi-Albert proportional attachment model; from Durrett secs 4.1 and 4.2. Critical behavior of the Erdos-Renyi random graph: probabilistic methods. A Brief History of Generative Models for Power Law and Lognormal Distributions /I1 28 0 R /Rect [ 17.01000 21.01000 191.50000 13.01000 ] /A << 5 0 obj Bollobas: Random Graphs; Janson, Luczak, Rucinski: Random Graphs; Bollobas, Riordan: Percolation. 0.57000 w Watts (Columbia): /Type /Annot /Border [ 0 0 0 ] /S /URI /pdfrw_0 95 0 R /Type /Page 17.01000 795.31000 Td E, Statistical, nonlinear, and soft matter physics, Proceedings 2001 IEEE International Conference on Cluster Computing, Proceedings 41st Annual Symposium on Foundations of Computer Science, By clicking accept or continuing to use the site, you agree to the terms outlined in our. /Subtype /Link /Resources << Algorithms for Complex Networks. and parallel to Durrett sections 3.1 and 3.4. >> /Parent 1 0 R /A << Whom You Know Matters: Venture Capital Networks and Investment Performance <00430061006d00620072006900640067006500200055006e00690076006500720073006900740079002000500072006500730073> Tj D Kempe, J. Kleinberg and A Demers. 19 0 obj Contents Preface vii Chapter 1. /F1 30 0 R We focus on some of the models that have received the most attention in the literature, namely, the Erdős-Rényi random graph, Inhomogeneous random graphs, the configuration model and preferential attachment models. Dynamics of jamming transitions in complex networks >> endobj /Type /Page by Michael Mitzenmacher. endstream >> Lecture 8: Tuesday Feb 13. /Length 13 0 g BT 17.01000 772.63000 Td 8 0 obj Based on /Parent 1 0 R Through examples of large complex graphs in realistic networks, research in graph theory has been forging ahead into exciting new directions. 141.73000 858.65000 l /pdfrw_0 69 0 R /URI (www\056cambridge\056org) /Type /Annot /S /URI Example 1. >> /Parent 1 0 R /Subtype /Link /Subtype /Link /Contents 89 0 R /Resources << Random Graphs and Complex Networks by van der Hofstad.